Investigating the Barriers to Applying the Internet-of-Things-Based Technologies to Construction Site Safety Management

Author:

Tabatabaee SanazORCID,Mohandes Saeed Reza,Ahmed Rana Rabnawaz,Mahdiyar AmirORCID,Arashpour MehrdadORCID,Zayed TarekORCID,Ismail Syuhaida

Abstract

The utilization of Internet-of-Things (IoT)-based technologies in the construction industry has recently grabbed the attention of numerous researchers and practitioners. Despite the improvements made to automate this industry using IoT-based technologies, there are several barriers to the further utilization of these leading-edge technologies. A review of the literature revealed that it lacks research focusing on the obstacles to the application of these technologies in Construction Site Safety Management (CSSM). Accordingly, the aim of this research was to identify and analyze the barriers impeding the use of such technologies in the CSSM context. To this end, initially, the extant literature was reviewed extensively and nine experts were interviewed, which led to the identification of 18 barriers. Then, the fuzzy Delphi method (FDM) was used to calculate the importance weights of the identified barriers and prioritize them through the lenses of competent experts in Hong Kong. Following this, the findings were validated using semi-structured interviews. The findings showed that the barriers related to “productivity reduction due to wearable sensors”, “the need for technical training”, and “the need for continuous monitoring” were the most significant, while “limitations on hardware and software and lack of standardization in efforts,” “the need for proper light for smooth functionality”, and “safety hazards” were the least important barriers. The obtained findings not only give new insight to academics, but also provide practical guidelines for the stakeholders at the forefront by enabling them to focus on the key barriers to the implementation of IoT-based technologies in CSSM.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3