ASSESSING CONSTRUCTION LABOURS’ SAFETY LEVEL: A FUZZY MCDM APPROACH

Author:

Mohandes Saeed Reza1,Sadeghi Haleh2,Mahdiyar Amir3,Durdyev Serdar4,Banaitis Audrius5,Yahya Khairulzan3,Ismail Syuhaida4

Affiliation:

1. Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

2. Department of Architectural Engineering, Islamic Azad University, Science and Research Branch, Shiraz, Iran

3. School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor, Malaysia

4. Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

5. Department of Construction Management and Real Estate, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania

Abstract

Risk decision matrix has widely been favoured by the researchers in the area of construction safety risk assessment. Although it provides the construction safety professionals with the final illustration of the risks magnitude, it suffers from major shortcomings, including inability to considering the importance of probability and severity, impaired analysis resulting from the use of raw numbers for ratings, and the limited range of classifications for assessing the risks. All these shortages give an impaired insight to the concerned parties, deteriorating the involved workers’ safety. As such, this paper aims to develop a novel Risk Assessment Model (RAM) through the integration of the Fuzzy Best Worst Method (FBWM) with the Interval-Valued Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (IVFTOPSIS). Based on the application of RAM to a real-life case study, it was observed that the developed RAM contributes to the body of construction safety risk assessment in five unique ways: (1) computing the importance of the two risk parameters (i.e. probability and severity) using fuzzy-reference-based comparisons, (2) obviating the needs for having statistical data, (3) prioritizing the identified risks using the combination of interval-valued triangular fuzzy numbers with TOPSIS, (4) providing the safety analysts with wider ranges of classifications for conducting risk assessment, and (5) providing the safety professionals with appropriate evaluation strategies for controlling the analysed risks. The developed model in the study can be applied to any projects, giving a conclusive plan to the concerned safety professionals for adopting the further prudent mitigation measurements.

Publisher

Vilnius Gediminas Technical University

Subject

Strategy and Management,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3