Combined Effects of CO2 Adsorption-Induced Swelling and Dehydration-Induced Shrinkage on Caprock Sealing Efficiency

Author:

Shang Xiaoji,Wang JianguoORCID,Wang Huimin,Wang Xiaolin

Abstract

Carbon dioxide (CO2) may infiltrate into the caprock and displace brine water in the caprock layer. This causes two effects: one is the caprock swelling induced by the CO2 adsorption and the other is the caprock dehydration and shrinkage due to CO2–brine water two-phase flow. The competition of these two effects challenges the caprock sealing efficiency. To study the evolution mechanism of the caprock properties, a numerical model is first proposed to investigate the combined effects of CO2 adsorption-induced expansion and dehydration-induced shrinkage on the caprock sealing efficiency. In this model, the caprock matrix is fully saturated by brine water in its initial state and the fracture network has only a brine water–CO2 two-phase flow. With the diffusion of CO2 from the fractures into the caprock matrix, the CO2 sorption and matrix dehydration can alter the permeability of the caprock and affect the entry capillary pressure. Second, this numerical model is validated with a breakthrough test. The effects of the two-phase flow on the water saturation, CO2 adsorption on the swelling strain, and dehydration on the shrinkage strain are studied, respectively. Third, the permeability evolution mechanism in the CO2–brine water mixed zone is investigated. The effect of dehydration on the penetration depth is also analyzed. It is found that both the shale matrix dehydration and CO2 sorption-induced swelling can significantly alter the sealing efficiency of the fractured caprock.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3