Estimation of Urban–Rural Land Surface Temperature Difference at Different Elevations in the Qinling–Daba Mountains Using MODIS and the Random Forest Model

Author:

Tang JialeORCID,Lan Xincan,Lian Yuanyuan,Zhao Fang,Li Tianqi

Abstract

Land surface temperature (LST) variations are very complex in mountainous areas owing to highly heterogeneous terrain and varied environment, which complicates the surface urban heat island (SUHI) in mountain cities. Previous studies on the urban heat island (UHI) effect mostly focus on the flat terrain areas; there are few studies on the UHI effect in mountainous areas, especially on the influence of elevation on the SUHI effect. To determine the SUHI in the Qinling–Daba mountains (China), MODIS LST data were first preprocessed and converted to the same elevations (1500 m, 2000 m, 2500 m, 3000 m, and 3500 m) using a digital elevation model and the random forest method. Then, the average LSTs in urban land, rural land, and cultivated land were calculated separately based on the ranges of the invariable urban, rural, and cultivated areas during 2010–2018, and the urban, rural, and cultivated land LST difference were estimated for the same elevations. Results showed that the accuracy of LST estimated using the random forest method is very high (R2 ≥ 0.9) at elevations of 1500 m, 2000 m, 2500 m, 3000 m and 3500 m. The difference in urban, rural, and cultivated lands’ LST has a trend of decrease with increasing elevation, meaning that the SUHI weakens at higher elevations. The average LST of urban areas is 0.52–0.59 °C (0.42–0.57 °C) higher than that of rural and cultivated areas at an elevation of 1500 m (2000 m). The average LST of urban areas is 0.10–1.25 °C lower than that of rural and cultivated areas at elevations of 2500 m, 3000 m, and 3500 m, indicating absence of the SUHI at those elevations.

Funder

National Natural Science Foundation of China

Integrated Scientific Investigation of the North-South Transitional Zone of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3