Psychological Well-Being of Left-Behind Children in China: Text Mining of the Social Media Website Zhihu

Author:

Lyu Yuwen,Chow Julian Chun-ChungORCID,Hwang Ji-Jen,Li Zhi,Ren ChengORCID,Xie Jungui

Abstract

China’s migrant population has significantly contributed to its economic growth; however, the impact on the well-being of left-behind children (LBC) has become a serious public health problem. Text mining is an effective tool for identifying people’s mental state, and is therefore beneficial in exploring the psychological mindset of LBC. Traditional data collection methods, which use questionnaires and standardized scales, are limited by their sample sizes. In this study, we created a computational application to quantitively collect personal narrative texts posted by LBC on Zhihu, which is a Chinese question-and-answer online community website; 1475 personal narrative texts posted by LBC were gathered. We used four types of words, i.e., first-person singular pronouns, negative words, past tense verbs, and death-related words, all of which have been associated with depression and suicidal ideations in the Chinese Linguistic Inquiry Word Count (CLIWC) dictionary. We conducted vocabulary statistics on the personal narrative texts of LBC, and bilateral t-tests, with a control group, to analyze the psychological well-being of LBC. The results showed that the proportion of words related to depression and suicidal ideations in the texts of LBC was significantly higher than in the control group. The differences, with respect to the four word types (i.e., first-person singular pronouns, negative words, past tense verbs, and death-related words), were 5.37, 2.99, 2.65, and 2.00 times, respectively, suggesting that LBC are at a higher risk of depression and suicide than their counterparts. By sorting the texts of LBC, this research also found that child neglect is a main contributing factor to psychological difficulties of LBC. Furthermore, mental health problems and the risk of suicide in vulnerable groups, such as LBC, is a global public health issue, as well as an important research topic in the era of digital public health. Through a linguistic analysis, the results of this study confirmed that the experiences of left-behind children negatively impact their mental health. The present findings suggest that it is vital for the public and nonprofit sectors to establish online suicide prevention and intervention systems to improve the well-being of LBC through digital technology.

Funder

China Scholarship Council

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference63 articles.

1. Migration and Labor Mobility in China;Fang,2009

2. The Main Data Bulletin of the National 1% Population Sample Survey in 2015,2016

3. Major challenges for China’s floating population and policy suggestions: An analysis of the 2010 Population Census Data;Duan;Popul. Res.,2013

4. Research on the Situation of Left-Behind Children in China;Duan;Popul. Res.,2005

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3