A Predictive Analysis of Heart Rates Using Machine Learning Techniques

Author:

Oyeleye Matthew,Chen TianhuaORCID,Titarenko Sofya,Antoniou Grigoris

Abstract

Heart disease, caused by low heart rate, is one of the most significant causes of mortality in the world today. Therefore, it is critical to monitor heart health by identifying the deviation in the heart rate very early, which makes it easier to detect and manage the heart’s function irregularities at a very early stage. The fast-growing use of advanced technology such as the Internet of Things (IoT), wearable monitoring systems and artificial intelligence (AI) in the healthcare systems has continued to play a vital role in the analysis of huge amounts of health-based data for early and accurate disease detection and diagnosis for personalized treatment and prognosis evaluation. It is then important to analyze the effectiveness of using data analytics and machine learning to monitor and predict heart rates using wearable device (accelerometer)-generated data. Hence, in this study, we explored a number of powerful data-driven models including the autoregressive integrated moving average (ARIMA) model, linear regression, support vector regression (SVR), k-nearest neighbor (KNN) regressor, decision tree regressor, random forest regressor and long short-term memory (LSTM) recurrent neural network algorithm for the analysis of accelerometer data to make future HR predictions from the accelerometer’s univariant HR time-series data from healthy people. The performances of the models were evaluated under different durations. Evaluated on a very recently created data set, our experimental results demonstrate the effectiveness of using an ARIMA model with a walk-forward validation and linear regression for predicting heart rate under all durations and other models for durations longer than 1 min. The results of this study show that employing these data analytics techniques can be used to predict future HR more accurately using accelerometers.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advancements and Prospects of Machine Learning in Medical Diagnostics: Unveiling the Future of Diagnostic Precision;Archives of Computational Methods in Engineering;2024-06-26

2. Wireless transmission of vital body data and ambient magnetic field with wearable IoT device attached smart textile;Textile Research Journal;2024-06-04

3. A robust neural network for privacy-preserving heart rate estimation in remote healthcare systems;Healthcare Analytics;2024-06

4. Explaining Predicted Stress Levels in employed Individuals;2024 9th International Conference on Machine Learning Technologies (ICMLT);2024-05-24

5. AI in Healthcare;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-05-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3