Real-Time System Prediction for Heart Rate Using Deep Learning and Stream Processing Platforms

Author:

Alharbi Abdullah1,Alosaimi Wael1,Sahal Radhya2,Saleh Hager3ORCID

Affiliation:

1. Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

2. Faculty of Computer Science and Engineering, Hodeidah University, Al Hudaydah, Yemen

3. Faculty of Computers and Artificial Intelligence, South Valley University, Hurghada, Egypt

Abstract

Low heart rate causes a risk of death, heart disease, and cardiovascular diseases. Therefore, monitoring the heart rate is critical because of the heart’s function to discover its irregularity to detect the health problems early. Rapid technological advancement (e.g., artificial intelligence and stream processing technologies) allows healthcare sectors to consolidate and analyze massive health-based data to discover risks by making more accurate predictions. Therefore, this work proposes a real-time prediction system for heart rate, which helps the medical care providers and patients avoid heart rate risk in real time. The proposed system consists of two phases, namely, an offline phase and an online phase. The offline phase targets developing the model using different forecasting techniques to find the lowest root mean square error. The heart rate time-series dataset is extracted from Medical Information Mart for Intensive Care (MIMIC-II). Recurrent neural network (RNN), long short-term memory (LSTM), gated recurrent units (GRU), and bidirectional long short-term memory (BI-LSTM) are applied to heart rate time series. For the online phase, Apache Kafka and Apache Spark have been used to predict the heart rate in advance based on the best developed model. According to the experimental results, the GRU with three layers has recorded the best performance. Consequently, GRU with three layers has been used to predict heart rate 5 minutes in advance.

Funder

Taif University

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3