Succession of the Abandoned Rice Fields Restores the Riparian Forest

Author:

Lim Bong SoonORCID,Seol Jaewon,Kim A Reum,An Ji Hong,Lim Chi HongORCID,Lee Chang SeokORCID

Abstract

The vegetation changes in the abandoned rice fields with different abandonment histories were analyzed across the country of South Korea. The successional process was confirmed by changes in vegetation profiles and species composition. The vegetation profile showed the process of starting with grassland, passing through the shrub stage, and turning into a tree-dominated forest. DCA ordination based on vegetation data showed that the process began with grasslands consisting of Persicaria thunbergii, Juncus effusus var. decipiens, Phalaris arundinacea, etc., then partially went through shrubland stages consisting of Salix gracilistyla, S. integra, young Salix koreensis, etc., and ultimately changed to a Salix koreensis dominated forest. In order to study the relationship between the succession process of the abandoned rice paddies and riparian vegetation, information on riparian vegetation was collected in the same watershed as the abandoned rice paddies investigated. Riparian vegetation tended to be distributed in the order of grasslands consisting of Phragmites japonica, Miscanthus sacchariflorus, P. arundinacea, etc., shrubland dominated by Salix gracilistyla, S. integra, etc., and a S. koreensis community dominated forest by reflecting the flooding regime as far away from the waterway. The result of stand ordination based on the riparian vegetation data also reflected the trend. From this result, we confirmed that the temporal sequence of the vegetation change that occurred in the abandoned rice fields resembled the spatial distribution of the riparian vegetation. Consequently, succession of the abandoned rice fields restored the riparian forest, which has almost disappeared in Korea and other Asian countries that use rice as their staple food.

Funder

Korea Environmental Industry and Technology Institute

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3