A Deep Learning Method Approach for Sleep Stage Classification with EEG Spectrogram

Author:

Li ChengfanORCID,Qi YueyuORCID,Ding Xuehai,Zhao Junjuan,Sang Tian,Lee Matthew

Abstract

The classification of sleep stages is an important process. However, this process is time-consuming, subjective, and error-prone. Many automated classification methods use electroencephalogram (EEG) signals for classification. These methods do not classify well enough and perform poorly in the N1 due to unbalanced data. In this paper, we propose a sleep stage classification method using EEG spectrogram. We have designed a deep learning model called EEGSNet based on multi-layer convolutional neural networks (CNNs) to extract time and frequency features from the EEG spectrogram, and two-layer bi-directional long short-term memory networks (Bi-LSTMs) to learn the transition rules between features from adjacent epochs and to perform the classification of sleep stages. In addition, to improve the generalization ability of the model, we have used Gaussian error linear units (GELUs) as the activation function of CNN. The proposed method was evaluated by four public databases, the Sleep-EDFX-8, Sleep-EDFX-20, Sleep-EDFX-78, and SHHS. The accuracy of the method is 94.17%, 86.82%, 83.02% and 85.12%, respectively, for the four datasets, the MF1 is 87.78%, 81.57%, 77.26% and 78.54%, respectively, and the Kappa is 0.91, 0.82, 0.77 and 0.79, respectively. In addition, our proposed method achieved better classification results on N1, with an F1-score of 70.16%, 52.41%, 50.03% and 47.26% for the four datasets.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference31 articles.

1. Ensemble SVM Method for Automatic Sleep Stage Classification

2. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects;Rechtschaffen,1968

3. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications;Iber,2007

4. Sleeping stage classification based on joint quaternion valued singular spectrum analysis and ensemble empirical mode decomposition

5. A Smart Detection Method of Sleep Quality Using EEG Signal and Long Short-Term Memory Model

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3