A Smart Detection Method of Sleep Quality Using EEG Signal and Long Short-Term Memory Model

Author:

Shi Min1ORCID,Yang Chengyi2ORCID,Zhang Dalu3

Affiliation:

1. School of Art and Design, Fuzhou University of International Studies and Trade, Fuzhou, Fujian 350202, China

2. College of Design, National Yunlin University of Science and Technology, Douliu, Taiwan 640301, China

3. School of Art, Soochow University, Suzhou, Jiangsu 215006, China

Abstract

Sleep is the most important physiological process related to human health. The development of society has accelerated the pace of people’s lives and has also increased people’s life pressure. As a result, more and more people suffer from reduced sleep quality, and the resulting diseases are also increasing. In response to this problem, this study proposes a sleep quality detection and management method based on electroencephalogram (EEG). The detection of sleep quality is mainly achieved by staging sleep EEG signals. First, wavelet packet decomposition (WPD) preprocesses the collected original EEG to extract the four rhythm waves of EEG. Second, the relative energy characteristics and nonlinear characteristics of each rhythm wave are extracted. The multisample entropy (MSE) values of different scales are calculated as the main features, and the rest are auxiliary features. Finally, the long short-term memory (LSTM) model is applied to classify the extracted sleep features, and the final result is obtained. Experiments were conducted in the MIT-BIH public database. The experimental results show that the method used in this article has a high accuracy rate for sleep quality detection. For the detected sleep quality data, the data are managed in combination with the mobile terminal software. Management is mainly embodied in two aspects. One is to query and display historical sleep quality data. The second is that when there are periodic abnormalities in the detected sleep quality data, the user will be reminded so that the user can respond in time to ensure physical fitness.

Funder

Fuzhou University

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3