Spatiotemporal Feature Enhancement Aids the Driving Intention Inference of Intelligent Vehicles

Author:

Chen HuiqinORCID,Chen Hailong,Liu Hao,Feng Xiexing

Abstract

In order that fully self-driving vehicles can be realized, it is believed that systems where the driver shares control and authority with the intelligent vehicle offer the most effective solution. An understanding of driving intention is the key to building a collaborative autonomous driving system. In this study, the proposed method incorporates the spatiotemporal features of driver behavior and forward-facing traffic scenes through a feature extraction module; the joint representation was input into an inference module for obtaining driver intentions. The feature extraction module was a two-stream structure that was designed based on a deep three-dimensional convolutional neural network. To accommodate the differences in video data inside and outside the cab, the two-stream network consists of a slow pathway that processes the driver behavior data with low frame rates, along with a fast pathway that processes traffic scene data with high frame rates. Then, a gated recurrent unit, based on a recurrent neural network, and a fully connected layer constitute an intent inference module to estimate the driver’s lane-change and turning intentions. A public dataset, Brain4Cars, was used to validate the proposed method. The results showed that compared with modeling using the data related to driver behaviors, the ability of intention inference is significantly improved after integrating traffic scene information. The overall accuracy of the intention inference of five intents was 84.92% at a time of 1 s prior to the maneuver, indicating that making full use of traffic scene information was an effective way to improve inference performance.

Funder

Zhejiang Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3