Antibacterial Effect and Possible Mechanism of Salicylic Acid Microcapsules against Escherichia coli and Staphylococcus aureus

Author:

Song Xiaoqiu,Li Rui,Zhang Qian,He ShoukuiORCID,Wang Yifei

Abstract

Microcapsules serve as a feasible formulation to load phenolic substances such as salicylic acid, a natural and safe antimicrobial agent. However, the antibacterial efficacy of salicylic acid microcapsules (SAMs) remains to be elucidated. Here, salicylic acid/β-cyclodextrin inclusion microcapsules were subjected to systematic antibacterial assays and preliminary antibacterial mechanism tests using Escherichia coli and Staphylococcus aureus as target organisms. It was found that the core-shell rhomboid-shaped SAMs had a smooth surface. SAMs exhibited a minimum inhibitory concentration (MIC) and a minimum bactericidal concentration (MBC) of 4 mg/mL against both bacteria. In the growth inhibition assay, 1/4 × MIC, 1/2 × MIC, and 1 × MIC of SAMs effectively retarded bacterial growth, and this effect was more prominent with the rise in the level of SAMs. Practically, SAMs possessed a rapid bactericidal effect at the 1 × MIC level with a reduction of more than 99.9% bacterial population within 10 min. A pronounced sterilization activity against E. coli and S. aureus was also observed when SAMs were embedded into hand sanitizers as antimicrobial agents. Moreover, exposure of both bacteria to SAMs resulted in the leakage of intracellular alkaline phosphatases and macromolecular substances (nucleic acids and proteins), which indicated the disruption of bacterial cell walls and cell membranes. In conclusion, SAMs were able to inactivate E. coli and S. aureus both in vitro and in situ, highlighting the promising utilization of this formulation for antimicrobial purposes in the area of food safety and public health.

Funder

National Natural Science Foundation of China

The alliance plan of Shanghai Promotion Association of Tech-Transfer

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3