Research on Multi-Scale Ecological Network Connectivity—Taking the Guangdong–Hong Kong–Macao Greater Bay Area as a Case Study

Author:

Wu Jiansheng,Zhang ShengyongORCID,Wen Haihao,Fan Xuening

Abstract

The Guangdong–Hong Kong–Macao Greater Bay Area urban agglomeration is an urban agglomeration with some of the most intensive urbanization since 1980s. A large amount of cultivated land, forest land, water bodies and other land types in the region has been occupied by construction land, resulting in fragmented ecological landscapes and biodiversity in the region and causing many other ecological problems. Based on this, this paper takes the Guangdong–Hong Kong–Macao Greater Bay Area as a case study, constructs an ecological network of the dispersion scale of five species from 1990 to 2020 based on a morphological spatial pattern analysis (MSPA) method, identifies the ecological groups in the network and uses the core node-based community evolution path tracking algorithm to analyze the ecological groups in order to explore the changes of ecological network connectivity at different scales in the region and to reveal the overall and local characteristics and changes of the migratory space of terrestrial mammals with different dispersion capabilities. The research results show that: (1) From 1990 to 2020, the area of construction land in the Guangdong–Hong Kong–Macao Greater Bay Area increased sharply, with good connectivity in the northwest, southwest and eastern regions and poor connectivity in the central region. (2) There are obvious differences between the overall and local changes in the connectivity trends of multi-scale regional ecological networks. On the whole, the overall ecological connectivity of the ecological network at each scale showed a gradual upward trend, and the overall connectivity index IIC and the possible connectivity index PC gradually increased with the increase of the maximum dispersal distance of species. From the perspective of local patches, the larger the species dispersion scale, the larger the value of the revised betweenness centrality index and the patch possible connectivity index. (3) The distribution of ecological groups at different species dispersion scales is different, and the smaller the dispersal scale of the species, the greater the distribution of ecological groups. Small-scale species are limited by the maximum dispersal distance, and the range of their ecological groups is generally small. Small-scale (3 km), mesoscale (10 km) and large-scale (30 km) core nodes of ecological groups show a gradual increase trend, and the overall connectivity of ecological groups has improved. However, the core nodes of the extra-large-scale (60 km) and ultra-large-scale (100 km) ecological groups show a trend of decreasing fluctuations, and the overall connectivity within the ecological group has declined. This study is helpful to clarify the structural characteristics of regional ecological space and provide a theoretical basis for regional ecological planning.

Funder

Shenzhen Fundamental Research Program

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference53 articles.

1. The relationship between the fragmentation pattern of urban landscape and the level of urbanization and social and economic development: Taking Beijing urban area as an example;Ecol. J.,2012

2. Habitat fragmentation and its lasting impact on Earth’s ecosystems;Sci. Adv.,2015

3. Wang, J. (2013). Optimization of Land Use Structure Based on Biodiversity Conservation, China University of Geosciences.

4. Teng, M. (2011). Research on the Construction of Ecological Security Patterns in Rapid Urbanization Areas, Huazhong Agricultural University.

5. Impact of rapid urban expansion on green space structure;Ecol. Indic.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3