Construction and Optimization of an Ecological Network in the Yellow River Source Region Based on MSPA and MCR Modelling

Author:

Liu Jia12,Chen Jianjun13,Yang Yanping1,You Haotian13ORCID,Han Xiaowen13

Affiliation:

1. College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China

2. Shenzhen Data Management Center of Planning and Natural Resources (Shenzhen Geospatial Information Center), Shenzhen 518040, China

3. Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin University of Technology, Guilin 541004, China

Abstract

The source region of the Yellow River (SRYR) is an important water conservation and farming area in China. Under the dual influence of the natural environment and external pressure, ecological patches in the region are becoming increasingly fragmented, and landscape connectivity is continuously declining, which directly affect the landscape patch pattern and SRYR sustainable development. In the SRYR, morphological spatial pattern analysis (MSPA) and landscape index methods were used to extract ecologically important sources. Based on the minimum cumulative resistance model (MCR), Linkage Mapper was used to generate a potential corridor, and then potential stepped stone patches were identified and extracted by the gravity model and betweenness centrality to build an optimal SRYR ecological network. The distribution of patches in the core area of the SRYR was fragmented, accounting for 80.53% of the total grassland area. The 10 ecological sources based on the landscape connectivity index and 15 important corridors identified based on the MCR model were mainly distributed in the central and eastern regions of the SRYR. Through betweenness centrality, 10 stepped stone patches were added, and 45 planned ecological corridors were obtained to optimize the SRYR ecological network and enhance east and west connectivity. Our research results can provide an important reference for the protection of the SRYR ecosystem, and have important guiding significance and practical value for ecological network construction in ecologically fragmented areas.

Funder

Guangxi Science and Technology Base and Talent Project

National Natural Science Foundation of China

Guangxi Key Laboratory of Spatial Information and Geomatics

Research Foundation of Guilin University of Technology

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3