Development and Evaluation of Spatio-Temporal Air Pollution Exposure Models and Their Combinations in the Greater London Area, UK

Author:

Dimakopoulou Konstantina,Samoli Evangelia,Analitis Antonis,Schwartz JoelORCID,Beevers Sean,Kitwiroon Nutthida,Beddows Andrew,Barratt BenjaminORCID,Rodopoulou Sophia,Zafeiratou Sofia,Gulliver John,Katsouyanni Klea

Abstract

Land use regression (LUR) and dispersion/chemical transport models (D/CTMs) are frequently applied to predict exposure to air pollution concentrations at a fine scale for use in epidemiological studies. Moreover, the use of satellite aerosol optical depth data has been a key predictor especially for particulate matter pollution and when studying large populations. Within the STEAM project we present a hybrid spatio-temporal modeling framework by (a) incorporating predictions from dispersion modeling of nitrogen dioxide (NO2), ozone (O3) and particulate matter with an aerodynamic diameter equal or less than 10 μm (PM10) and less than 2.5 μm (PM2.5) into a spatio-temporal LUR model; and (b) combining the predictions LUR and dispersion modeling and additionally, only for PM2.5, from an ensemble machine learning approach using a generalized additive model (GAM). We used air pollution measurements from 2009 to 2013 from 62 fixed monitoring sites for O3, 115 for particles and up to 130 for NO2, obtained from the dense network in the Greater London Area, UK. We assessed all models following a 10-fold cross validation (10-fold CV) procedure. The hybrid models performed better compared to separate LUR models. Incorporation of the dispersion estimates in the LUR models as a predictor, improved the LUR model fit: CV-R2 increased to 0.76 from 0.71 for NO2, to 0.79 from 0.57 for PM10, to 0.81 to 0.66 for PM2.5 and to 0.75 from 0.62 for O3. The CV-R2 obtained from the hybrid GAM framework was also increased compared to separate LUR models (CV-R2 = 0.80 for NO2, 0.76 for PM10, 0.79 for PM2.5 and 0.75 for O3). Our study supports the combined use of different air pollution exposure assessment methods in a single modeling framework to improve the accuracy of spatio-temporal predictions for subsequent use in epidemiological studies.

Funder

Medical Research Council

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3