Machine Learning Models for Data-Driven Prediction of Diabetes by Lifestyle Type

Author:

Qin Yifan,Wu JinlongORCID,Xiao Wen,Wang Kun,Huang Anbing,Liu Bowen,Yu Jingxuan,Li Chuhao,Yu Fengyu,Ren ZhanbingORCID

Abstract

The prevalence of diabetes has been increasing in recent years, and previous research has found that machine-learning models are good diabetes prediction tools. The purpose of this study was to compare the efficacy of five different machine-learning models for diabetes prediction using lifestyle data from the National Health and Nutrition Examination Survey (NHANES) database. The 1999–2020 NHANES database yielded data on 17,833 individuals data based on demographic characteristics and lifestyle-related variables. To screen training data for machine models, the Akaike Information Criterion (AIC) forward propagation algorithm was utilized. For predicting diabetes, five machine-learning models (CATBoost, XGBoost, Random Forest (RF), Logistic Regression (LR), and Support Vector Machine (SVM)) were developed. Model performance was evaluated using accuracy, sensitivity, specificity, precision, F1 score, and receiver operating characteristic (ROC) curve. Among the five machine-learning models, the dietary intake levels of energy, carbohydrate, and fat, contributed the most to the prediction of diabetes patients. In terms of model performance, CATBoost ranks higher than RF, LG, XGBoost, and SVM. The best-performing machine-learning model among the five is CATBoost, which achieves an accuracy of 82.1% and an AUC of 0.83. Machine-learning models based on NHANES data can assist medical institutions in identifying diabetes patients.

Funder

National Natural Science Foundation of China

Research Foundation for Young Teacher of Shenzhen University

High-level Scientific Research Foundation for the Introduction of Talent of Shenzhen University

Natural Science Featured Innovation Projects in Ordinary Universities in Guangdong Province

Scientific Research Platform and Project of Colleges and Universities of Education Department of Guangdong Province

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3