A comparative evaluation of machine learning ensemble approaches for disease prediction using multiple datasets

Author:

Mahajan Palak,Uddin ShahadatORCID,Hajati Farshid,Moni Mohammad Ali,Gide Ergun

Abstract

Abstract Purpose Machine learning models are used to develop and improve various disease prediction systems. Ensemble learning is a machine learning technique that combines many classifiers to increase performance by making more accurate predictions than a single classifier. Although several researchers have employed ensemble techniques for disease prediction, a comprehensive comparative study of these techniques still needs to be provided. Methods Using 16 disease datasets from Kaggle and the UCI Machine Learning Repository, this study compares the performance of 15 variants of ensemble techniques for disease prediction. The comparison was performed using six performance measures: accuracy, precision, recall, F1 score, AUC (Area Under the receiver operating characteristics Curve) and AUPRC (Area Under the Precision-Recall Curve). Results Stacking variant of Multi-level stacking showed superior disease prediction performance compared with other bagging and boosting variants, followed by another stacking variant (Classical stacking). Overall, stacking outperformed bagging and boosting for disease prediction. Logit Boost showed the worst performance. Conclusion The findings of this study can help researchers select an appropriate ensemble approach for future studies focusing on accurate disease prediction.

Funder

University of Sydney

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3