Trajectory Tracking Design for a Swarm of Autonomous Mobile Robots: A Nonlinear Adaptive Optimal Approach

Author:

Chen Yung-HsiangORCID,Chen Yung-Yue

Abstract

This research presents a nonlinear adaptive optimal control approach to the trajectory tracking problem of a swarm of autonomous mobile robots. Mathematically, finding an analytical adaptive control solution that meets the H2 performance index for the trajectory tracking problem when controlling a swarm of autonomous mobile robots is an almost impossible task, due to the great complexity and high dimensions of the dynamics. For deriving an analytical adaptive control law for this tracking problem, a particular formulation for the trajectory tracking error dynamics between a swarm of autonomous mobile robots and the desired trajectory is made via a filter link. Based on this prior analysis of the trajectory tracking error dynamics, a closed-form adaptive control law is analytically derived from a high-dimensional nonlinear partial differential equation, which is equivalent to solving the trajectory tracking problem of a swarm of autonomous mobile robots with respect to an H2 performance index. This delivered adaptive nonlinear control solution offers the advantages of a simple control structure and good energy-saving performance. From the trajectory tracking verification, this proposed control approach possesses satisfactory trajectory tracking performance for a swarm of autonomous mobile robots, even under the effects of huge modeling uncertainties.

Funder

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference33 articles.

1. Backstepping Approach for Autonomous Mobile Robot Trajectory Tracking;Ibari;J. Elect. Eng. Comp. Sci.,2016

2. Trajectory Tracking Wheeled Mobile Robot Using Backstepping Method with Connection off Axle Trailer;Mohammad;Int. J. Smart Elect. Eng.,2018

3. Backstepping Trajectory Tracking Based on Fuzzy Sliding Mode Control for Differential Mobile Robots

4. Adaptive backstepping control of tracked robot running trajectory based on real-time slip parameter estimation

5. Sliding Mode Controller Design for Trajectory Tracking of a Non-Holonomic Mobile Robot with Disturbance;Niraj;Comput. Electr. Eng.,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3