Bearing Fault Diagnosis Based on Discriminant Analysis Using Multi-View Learning

Author:

Tong Zhe,Li Wei,Zhang BoORCID,Gao HaifengORCID,Zhu Xinglong,Zio EnricoORCID

Abstract

Bearing fault diagnosis has been a challenge in rotating machinery and has gained considerable attention. In order to correctly classify faults, the conventional fault diagnosis methods are mostly based on vibration signals. However, features extracted from a single view of vibration signals may leave out useful information, which can cause the incompleteness of intrinsic information and increase the risk of the performance degradation of fault classifications. In this paper, a novel bearing fault diagnosis method, discriminant analysis using multi-view learning (DAML), is proposed to tackle this issue. Multi-view datasets referring to vibration and acoustic signals are obtained by carrying out a fast Fourier transform (FFT). Then, multi-view feature (MVF) representation, including view-invariant and category discriminative information in a common subspace, is achieved based on canonical correlation analysis (CCA) and uncorrelated linear discriminant analysis (ULDA). Ultimately, with the help of the K-nearest neighbor (KNN) classifier built on the multi-view features, bearing faults are identified. The extensive experimental results show that DAML can identify the bearing fault accurately and outperforms other competitive approaches.

Funder

the National Key R&D Program of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3