Reactivity of Nitrate with Zero-Valent Iron

Author:

Wagner Katie M.,Karathanasis Tasios,Matocha Christopher J.

Abstract

Elevated nitrate concentrations in groundwater and surface water supplies can negatively impact the quality of the environment and human health. Recent studies have examined the use of zero-valent iron technology to treat nitrate-contaminated groundwater. Mechanistic aspects of nitrate reduction by zero-valent iron are unresolved. This project investigated the kinetics and mechanism of nitrate reduction by zero-valent iron under anoxic conditions and under oxic conditions. Stirred-batch reactions were studied over environmentally relevant ranges of reactant concentration, pH, and temperature. A complex rate expression was derived with a 1.8 order dependence on nitrate, a 1.4 order dependence on zero-valent iron, and a fractional order (0.8) dependence on proton concentrations under anoxic conditions. An apparent activation energy of 35 kJ mol−1 was observed indicating that nitrate reduction was diffusion controlled under our conditions. Furthermore, the calculated entropy of activation value of −162 J mol−1K−1 indicates that this reaction occurred by an associative mechanism. Under oxic conditions, there was a lag period in nitrate reduction where oxygen was preferentially utilized, leading to a slower rate of nitrate reduction when compared with anoxic conditions. These rate data can be used in predicting nitrate disappearance in nitrate-contaminated groundwater and wastewater treated with zero-valent iron.

Funder

United States Department of Agriculture

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3