Synergizing Fe2O3 Nanoparticles on Single Atom Fe‐N‐C for Nitrate Reduction to Ammonia at Industrial Current Densities

Author:

Murphy Eamonn1ORCID,Sun Baiyu1,Rüscher Martina2,Liu Yuanchao1,Zang Wenjie3,Guo Shengyuan1,Chen Yu‐Han1,Hejral Uta2,Huang Ying3,Ly Alvin3,Zenyuk Iryna V.1,Pan Xiaoqing3,Timoshenko Janis2,Cuenya Beatriz Roldán2,Spoerke Erik D.4,Atanassov Plamen1ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering National Fuel Cell Research Center University of California Irvine CA 92697 USA

2. Department of Interface Science Fritz‐Haber‐Institut der Max‐Planck‐Gesellschaft 14195 Berlin Germany

3. Department of Materials Science and Engineering University of California Irvine CA 92697 USA

4. Sandia National Laboratories, Energy Storage Technologies & Systems Albuquerque NM 87185 USA

Abstract

AbstractThe electrochemical reduction of nitrates (NO3) enables a pathway for the carbon neutral synthesis of ammonia (NH3), via the nitrate reduction reaction (NO3RR), which has been demonstrated at high selectivity. However, to make NH3 synthesis cost‐competitive with current technologies, high NH3 partial current densities (jNH3) must be achieved to reduce the levelized cost of NH3. Here, the high NO3RR activity of Fe‐based materials is leveraged to synthesize a novel active particle‐active support system with Fe2O3 nanoparticles supported on atomically dispersed Fe–N–C. The optimized 3×Fe2O3/Fe–N–C catalyst demonstrates an ultrahigh NO3RR activity, reaching a maximum jNH3 of 1.95 A cm−2 at a Faradaic efficiency (FE) for NH3 of 100% and an NH3 yield rate over 9 mmol hr−1 cm−2. Operando XANES and post‐mortem XPS reveal the importance of a pre‐reduction activation step, reducing the surface Fe2O3 (Fe3+) to highly active Fe0 sites, which are maintained during electrolysis. Durability studies demonstrate the robustness of both the Fe2O3 particles and Fe–Nx sites at highly cathodic potentials, maintaining a current of −1.3 A cm−2 over 24 hours. This work exhibits an effective and durable active particle‐active support system enhancing the performance of the NO3RR, enabling industrially relevant current densities and near 100% selectivity.

Funder

U.S. Department of Energy

Office of Energy Efficiency and Renewable Energy

Sandia National Laboratories

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3