Author:
Tian Huiwen,Bo Liyuan,Mao Xiaomin,Liu Xinyu,Wang Yan,Hu Qingyang
Abstract
Drip irrigation under mulch is a widely used technique in the arid region of northwest China. The partially mulched soil and the bare strips between mulched areas may complicate the migration of water, salt, and heat in soils, and cause lateral salt accumulation on bare soil surfaces. For investigating hydrothermal dynamics and salt distribution patterns under such circumstances, tank experiments with drip irrigation under plastic film on partially mulched soil were conducted under two intensities of drip irrigation (i.e., low (W1) and high (W2)) with the same total irrigation amount. The spatial distributions of soil water, temperature, and electrical conductivity were monitored accordingly. The two-dimensional (2D) model of soil water, salt, and heat transport under drip irrigation and partially mulched soil conditions was established using HYDRUS-2D, and kinetic adsorption during salt migration was considered. The results of the experiments showed that the uneven distribution of the hydrothermal state led to the accumulation of salt on the un-mulched soil surface. Water migrated from where the dripper was located, and heat accumulated mainly in the mulched soil. HYDRUS-2D matched reasonably well with the observed data, with an R2 higher than 0.54. Under the partially mulched conditions, lower intensity of drip irrigation (W1) show higher desalination efficiency in root zones, with less even lateral salt distribution. Scenario simulations further demonstrated that a larger total irrigation amount would result in a larger desalination zone, and drip irrigations with appropriate incremental intensity could improve salt leaching in the root zone with increased lateral migration of water.
Funder
National Natural Science Foundation of China
National Key Research and Development Program
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献