Landmark Topology Descriptor-Based Place Recognition and Localization under Large View-Point Changes

Author:

Gao Guanhong1,Xiong Zhi1,Zhao Yao1ORCID,Zhang Ling1

Affiliation:

1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Abstract

Accurate localization between cameras is a prerequisite for a vision-based heterogeneous robot systems task. The core issue is how to accurately perform place recognition from different view-points. Traditional appearance-based methods have a high probability of failure in place recognition and localization under large view-point changes. In recent years, semantic graph matching-based place recognition methods have been proposed to solve the above problem. However, these methods rely on high-precision semantic segmentation results and have a high time complexity in node extraction or graph matching. In addition, methods only utilize the semantic labels of the landmarks themselves to construct graphs and descriptors, making such approaches fail in some challenging scenarios (e.g., scene repetition). In this paper, we propose a graph-matching method based on a novel landmark topology descriptor, which is robust to view-point changes. According to the experiment on real-world data, our algorithm can run in real-time and is approximately four times and three times faster than state-of-the-art algorithms in the graph extraction and matching phases, respectively. In terms of place recognition performance, our algorithm achieves the best place recognition precision at a recall of 0–70% compared with classic appearance-based algorithms and an advanced graph-based algorithm in the scene of significant view-point changes. In terms of positioning accuracy, compared to the traditional appearance-based DBoW2 and NetVLAD algorithms, our method outperforms by 95%, on average, in terms of the mean translation error and 95% in terms of the mean RMSE. Compared to the state-of-the-art SHM algorithm, our method outperforms by 30%, on average, in terms of the mean translation error and 29% in terms of the mean RMSE. In addition, our method outperforms the current state-of-the-art algorithm, even in challenging scenarios where the benchmark algorithms fail.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3