Abstract
As it is high in value, extra virgin olive oil (EVOO) is frequently blended with inferior vegetable oils. This study presents an optical method for determining the adulteration level of EVOO with soybean oil as well as peanut oil using LED-induced fluorescence spectroscopy. Eight LEDs with central wavelengths from ultra-violet (UV) to blue are tested to induce the fluorescence spectra of EVOO, peanut oil, and soybean oil, and the UV LED of 372 nm is selected for further detection. Samples are prepared by mixing olive oil with different volume fractions of peanut or soybean oil, and their fluorescence spectra are collected. Different pre-processing and regression methods are utilized to build the prediction model, and good linearity is obtained between the predicted and actual adulteration concentration. This result, accompanied by the non-destruction and no pre-treatment characteristics, proves that it is feasible to use LED-induced fluorescence spectroscopy as a way to investigate the EVOO adulteration level, and paves the way for building a hand-hold device that can be applied to real market conditions in the future.
Funder
Zhejiang Provincial Natural Science Foundation of China
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献