Influence of Analyzed Sequence Length on Parameters in Laryngeal High-Speed Videoendoscopy

Author:

Schlegel Patrick,Semmler MarionORCID,Kunduk Melda,Döllinger Michael,Bohr Christopher,Schützenberger Anne

Abstract

Laryngeal high-speed videoendoscopy (HSV) allows objective quantification of vocal fold vibratory characteristics. However, it is unknown how the analyzed sequence length affects some of the computed parameters. To examine if varying sequence lengths influence parameter calculation, 20 HSV recordings of healthy females during sustained phonation were investigated. The clinical prevalent Photron Fastcam MC2 camera with a frame rate of 4000 fps and a spatial resolution of 512 × 256 pixels was used to collect HSV data. The glottal area waveform (GAW), describing the increase and decrease of the area between the vocal folds during phonation, was extracted. Based on the GAW, 16 perturbation parameters were computed for sequences of 5, 10, 20, 50 and 100 consecutive cycles. Statistical analysis was performed using SPSS Statistics, version 21. Only three parameters (18.8%) were statistically significantly influenced by changing sequence lengths. Of these parameters, one changed until 10 cycles were reached, one until 20 cycles were reached and one, namely Amplitude Variability Index (AVI), changed between almost all groups of different sequence lengths. Moreover, visually observable, but not statistically significant, changes within parameters were observed. These changes were often most prominent between shorter sequence lengths. Hence, we suggest using a minimum sequence length of at least 20 cycles and discarding the parameter AVI.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference52 articles.

1. Principles of Voice Production;Titze,2000

2. Source Mechanisms;Stevens,2000

3. Vocal fundamental frequency;Baken,1999

4. Clinical Applications for High-Speed Laryngeal Imaging;Kendall,2010

5. Videokymography: High-speed line scanning of vocal fold vibration

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3