Effect of Ligament Fibers on Dynamics of Synthetic, Self-Oscillating Vocal Folds in a Biomimetic Larynx Model

Author:

Tur Bogac1,Gühring Lucia1,Wendler Olaf1ORCID,Schlicht Samuel2ORCID,Drummer Dietmar2,Kniesburges Stefan1ORCID

Affiliation:

1. Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Erlangen, Medical School, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstrasse 1, 91054 Erlangen, Germany

2. Institute of Polymer Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Am Weichselgarten 10, 91058 Erlangen, Germany

Abstract

Synthetic silicone larynx models are essential for understanding the biomechanics of physiological and pathological vocal fold vibrations. The aim of this study is to investigate the effects of artificial ligament fibers on vocal fold vibrations in a synthetic larynx model, which is capable of replicating physiological laryngeal functions such as elongation, abduction, and adduction. A multi-layer silicone model with different mechanical properties for the musculus vocalis and the lamina propria consisting of ligament and mucosa was used. Ligament fibers of various diameters and break resistances were cast into the vocal folds and tested at different tension levels. An electromechanical setup was developed to mimic laryngeal physiology. The measurements included high-speed video recordings of vocal fold vibrations, subglottal pressure and acoustic. For the evaluation of the vibration characteristics, all measured values were evaluated and compared with parameters from ex and in vivo studies. The fundamental frequency of the synthetic larynx model was found to be approximately 200–520 Hz depending on integrated fiber types and tension levels. This range of the fundamental frequency corresponds to the reproduction of a female normal and singing voice range. The investigated voice parameters from vocal fold vibration, acoustics, and subglottal pressure were within normal value ranges from ex and in vivo studies. The integration of ligament fibers leads to an increase in the fundamental frequency with increasing airflow, while the tensioning of the ligament fibers remains constant. In addition, a tension increase in the fibers also generates a rise in the fundamental frequency delivering the physiological expectation of the dynamic behavior of vocal folds.

Publisher

MDPI AG

Subject

Bioengineering

Reference94 articles.

1. Results of experiments with human larynxes;Tan;Pract. Oto-Rhino-Laryngol.,1959

2. Posterior glottic gap and age as factors predicting voice outcome of injection laryngoplasty in patients with unilateral vocal fold paralysis;Choi;J. Laryngol. Otol.,2012

3. Muscular tension dysphonia;Morrison;J. Otolaryngol.,1983

4. Muscle tension dysphonia in Vietnamese female teachers;Nguyen;J. Voice Off. J. Voice Found.,2009

5. Management of glottal insufficiency;Bhatt;Otorinolaringologia,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3