Throughput Maximization Using Deep Complex Networks for Industrial Internet of Things

Author:

Sun DanfengORCID,Xi Yanlong,Yaqot AbdullahORCID,Hellbrück HorstORCID,Wu Huifeng

Abstract

The high-density Industrial Internet of Things needs to meet the requirements of high-density device access and massive data transmission, which requires the support of multiple-input multiple-output (MIMO) antenna cognitive systems to keep high throughput. In such a system, spectral efficiency (SE) optimization based on dynamic power allocation is an effective way to enhance the network throughput as the channel quality variations significantly affect the spectral efficiency performance. Deep learning methods have illustrated the ability to efficiently solve the non-convexity of resource allocation problems induced by the channel multi-path and inter-user interference effects. However, current real-valued deep-learning-based power allocation methods have failed to utilize the representational capacity of complex-valued data as they regard the complex-valued channel data as two parts: real and imaginary data. In this paper, we propose a complex-valued power allocation network (AttCVNN) with cross-channel and in-channel attention mechanisms to improve the model performance where the former considers the relationship between cognitive users and the primary user, i.e., inter-network users, while the latter focuses on the relationship among cognitive users, i.e., intra-network users. Comparison experiments indicate that the proposed AttCVNN notably outperforms both the equal power allocation method (EPM) and the real-valued and the complex-valued fully connected network (FNN, CVFNN) and shows a better convergence rate in the training phase than the real-valued convolutional neural network (AttCNN).

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Science and Technology Program of Zhejiang Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference31 articles.

1. Dynamic edge access system in IoT environment;Wu;IEEE Internet Things J.,2019

2. A Data Stream Cleaning System Using Edge Intelligence for Smart City Industrial Environments;Sun;IEEE Trans. Ind. Inform.,2021

3. Intelligent Data Collaboration in Heterogeneous-device IoT Platforms;Sun;ACM Trans. Sens. Netw.,2021

4. 5G ACIA (2021, May 26). 5G for Connected Industries and Automation. Available online: https://5g-acia.org/wp-content/uploads/2021/04/WP_5G_for_Connected_Industries_and_Automation_Download_19.03.19.pdf.

5. ITG (2017). Funktechnologien Fuer Industrie 4.0, VDE. Available online: https://www.vde.com/resource/blob/1635512/acf5521beb328d25fffda9fc6a723501/positionspapier-funktechnologien-data.pdf.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3