Development of Split Ring Resonator Shaped Six Element 2 × 3 Multiple Input Multiple Output Antenna for the C/X/Ku/K Band Applications

Author:

Alsharari Meshari1ORCID,Sorathiya Vishal2ORCID,Armghan Ammar1ORCID,Dave Kavan3,Aliqab Khaled1ORCID

Affiliation:

1. Department of Electrical Engineering. College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia

2. Faculty of Engineering and Technology, Parul Institute of Engineering and Technology, Parul University, Waghodia Road, Vadodara 391760, Gujarat, India

3. Department of Information and communication technology, Marwadi University, Rajkot 360005, Gujarat, India

Abstract

In this manuscript, we have numerically investigated and experimentally verified the six-element split ring resonator and circular patch-shaped multiple input, multiple output antenna operating in the 1–25 GHz band. MIMO antennas are analyzed in terms of several physical parameters, such as reflectance, gain, directivity, VSWR, and electric field distribution. The parameters of the MIMO antenna, for instance, the envelope correlation coefficient (ECC), channel capacity loss (CCL), the total active reflection coefficient (TARC), directivity gain (DG), and mean effective gain (MEG), are also investigated for identification of a suitable range of these parameters for multichannel transmission capacity. Ultrawideband operation at 10.83 GHz is possible for the theoretically designed and practically executed antenna with the return loss and gain values of −19 dB and −28 dBi, respectively. Overall, the antenna offers minimum return loss values of −32.74 dB for the operating band of 1.92 to 9.81 GHz with a bandwidth of 6.89 GHz. The antennas are also investigated in terms of a continuous ground patch and a scattered rectangular patch. The proposed results are highly applicable for the ultrawideband operating MIMO antenna application in satellite communication with C/X/Ku/K bands.

Funder

Deanship of Scientific Research at Jouf University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3