Novel CuMgAlTi-LDH Photocatalyst for Efficient Degradation of Microplastics under Visible Light Irradiation

Author:

Jiang Shengyun1,Yin Mingshan1,Ren Huixue1ORCID,Qin Yaping1,Wang Weiliang2,Wang Quanyong3,Li Xuemei1

Affiliation:

1. School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China

2. Beicheng Environmental Engineering Co., Ltd., Jinan 250101, China

3. Shandong Huacheng Urban Construction Design Engineering Co., Ltd., Jinan 250101, China

Abstract

Microplastics (MPs) in the water system could easily enter the human body and pose a potential threat, so finding a green and effective solution remains a great challenge. At present, the advanced oxidation technology represented by photocatalysis has been proven to be effective in the removal of organic pollutants, making it a feasible method to solve the problem of MP pollution. In this study, the photocatalytic degradation of typical MP polystyrene (PS) and polyethylene (PE) by a new quaternary layered double hydroxide composite photomaterial CuMgAlTi-R400 was tested under visible light irradiation. After 300 h of visible light irradiation, the average particle size of PS decreased by 54.2% compared with the initial average particle size. The smaller the particle size, the higher the degradation efficiency. The degradation pathway and mechanism of MPs were also studied by GC–MS, which showed that PS and PE produced hydroxyl and carbonyl intermediates in the process of photodegradation. This study demonstrated a green, economical, and effective strategy for the control of MPs in water.

Funder

Natural Science Foundation of Shandong Province

Shandong Provincial Major Scientific and Technological Innovation Project

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3