Layered Double Hydroxide-Based Photocatalysts for the Removal of Emerging Contaminants: Progress in Past Ten Years

Author:

Luo Lingfeng1ORCID,Hou Chen1,Wang Lan1ORCID,Zhang Wei1ORCID,Wang Cong1,Liu Junjie1,Wu Yiqian1,Wang Chuanyi1ORCID

Affiliation:

1. School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710000, China

Abstract

Currently, public health is seriously threatened by the massive concentrations of emerging contaminants. Treating emerging contaminants in water using effective methods has become a major challenge worldwide. Photocatalytic technology, as an eco-friendly technology, has been recognized as an effective means of removing contaminants from water. Among the various photocatalysts, layered double hydroxides (LDHs), known as hydrotalcite-like materials, have been explored extensively in photocatalytic reactions due to their switchable properties and the large surface areas of their unique two-dimensional structures. In this article, recent advances in the photocatalytic degradation of emerging contaminants by LDH-based photocatalysts are reviewed. Firstly, the fundamental principles of the photocatalytic degradation of emerging contaminants using LDH-based materials are briefly introduced. Various LDHs applied in the photocatalytic degradation of emerging contaminants are broadly summarized into four types: pure-phase LDHs, interlayer-modified LDHs, LDH-based composites, and layered double oxides (LDOs). Moreover, the synthesis process and catalytic mechanism of LDH-based photocatalysts are also reviewed. An outlook on the problems and future development of LDH-based photocatalysts in water remediation is provided at the end.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Shaanxi

“Thousand Talents Program” of Shaanxi Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3