Affiliation:
1. School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710000, China
Abstract
Currently, public health is seriously threatened by the massive concentrations of emerging contaminants. Treating emerging contaminants in water using effective methods has become a major challenge worldwide. Photocatalytic technology, as an eco-friendly technology, has been recognized as an effective means of removing contaminants from water. Among the various photocatalysts, layered double hydroxides (LDHs), known as hydrotalcite-like materials, have been explored extensively in photocatalytic reactions due to their switchable properties and the large surface areas of their unique two-dimensional structures. In this article, recent advances in the photocatalytic degradation of emerging contaminants by LDH-based photocatalysts are reviewed. Firstly, the fundamental principles of the photocatalytic degradation of emerging contaminants using LDH-based materials are briefly introduced. Various LDHs applied in the photocatalytic degradation of emerging contaminants are broadly summarized into four types: pure-phase LDHs, interlayer-modified LDHs, LDH-based composites, and layered double oxides (LDOs). Moreover, the synthesis process and catalytic mechanism of LDH-based photocatalysts are also reviewed. An outlook on the problems and future development of LDH-based photocatalysts in water remediation is provided at the end.
Funder
National Natural Science Foundation of China
Key Research and Development Program of Shaanxi
“Thousand Talents Program” of Shaanxi Province of China