Molecular Dynamics Simulation of Polymer Nanocomposites with Supramolecular Network Constructed via Functionalized Polymer End-Grafted Nanoparticles

Author:

Hou Guanyi1ORCID,Ren Runhan1,Shang Wei1,Weng Yunxuan1ORCID,Liu Jun2

Affiliation:

1. College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China

2. Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

Since the proposal of self-healing materials, numerous researchers have focused on exploring their potential applications in flexible sensors, bionic robots, satellites, etc. However, there have been few studies on the relationship between the morphology of the dynamic crosslink network and the comprehensive properties of self-healing polymer nanocomposites (PNCs). In this study, we designed a series of modified nanoparticles with different sphericity (η) to establish a supramolecular network, which provide the self-healing ability to PNCs. We analyzed the relationship between the morphology of the supramolecular network and the mechanical performance and self-healing behavior. We observed that as η increased, the distribution of the supramolecular network became more uniform in most cases. Examination of the segment dynamics of polymer chains showed that the completeness of the supramolecular network significantly hindered the mobility of polymer matrix chains. The mechanical performance and self-healing behavior of the PNCs showed that the supramolecular network mainly contributed to the mechanical performance, while the self-healing efficiency was dominated by the variation of η. We observed that appropriate grafting density is the proper way to effectively enhance the mechanical and self-healing performance of PNCs. This study provides a unique guideline for designing and fabricating self-healing PNCs with modified Nanoparticles (NPs).

Funder

National key research and development program

Applied Basic Research Program of Science and Technology Commission Foundation of Beijing

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3