Effect of Reinforcement with Short Carbon Fibers on the Friction and Wear Resistance of Additively Manufactured PA12

Author:

Gadelmoula Abdelrasoul12ORCID,Aldahash Saleh Ahmed1ORCID

Affiliation:

1. Department of Mechanical and Industrial Engineering, College of Engineering, Majmaah University, Al-Majmaah 11952, Saudi Arabia

2. Department of Mechanical Design and Production Engineering, Faculty of Engineering, Assiut University, Assiut 71515, Egypt

Abstract

Reinforcing thermoplastic materials for additive manufacturing with either short, long, and continuous fibers or micro/nanoparticles is a sound means to enhance the mechanical/tribological properties of functional 3D printed objects. However, despite the fact that reinforced thermoplastics are being used extensively in modern applications, little data are found in open literature regarding the effect of such reinforcements on the friction and wear characteristics of additively manufactured objects. Therefore, this article presents a comparative study that aims to investigate the friction and wear behavior of carbon fiber-reinforced polyamide 12 (CF-PA12) as compared to pure polyamide 12 (PA12). The test specimens were prepared by selective laser sintering (SLS) at five different build orientations and examined using a pin-on-disc tribometer in dry sliding mode. The coefficient of friction (COF), interface temperature, friction-induced noise, and specific wear rate were measured. Scanning electron microscopy (SEM) was used to inspect the tribo-surfaces. The results revealed that both the COF and contact temperature of CF-PA12 are orientation-independent and are lower than those of pure PA12. Also, it was found that, compared with pure PA12, CF-PA12 has 25% smaller COF and 15–40% higher wear resistance. Further, the SEM of tribo-surfaces showed that adhesive wear dominates the surface of pure PA12, while both adhesive and abrasive wear patterns coexist in CF-PA12. Moreover, fiber crushing and thinning were observed, and this, under some circumstances, can result in a considerable increase in frictional noise.

Funder

Deanship of Scientific Research at Majmaah University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3