Identification of NOL-Ring Composite Materials’ Damage Mechanism Based on the STOA-VMD Algorithm

Author:

Jiang Peng1,Li Hui1,Yan Xiaowei2,Zhang Luying1,Li Wei1

Affiliation:

1. College of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China

2. Shandong Gaint E-Tech Co., Ltd., Jinan 250000, China

Abstract

This research utilized the sooty tern optimization algorithm–variational mode decomposition (STOA-VMD) optimization algorithm to extract the acoustic emission (AE) signal associated with damage in fiber-reinforced composite materials. The effectiveness of this optimization algorithm was validated through a tensile experiment on glass fiber/epoxy NOL-ring specimens. To solve the problems of a high degree of aliasing, high randomness, and a poor robustness of AE data of NOL-ring tensile damage, the signal reconstruction method of optimized variational mode decomposition (VMD) was first used to reconstruct the damage signal and the parameters of VMD were optimized by the sooty tern optimization algorithm. The optimal decomposition mode number K and penalty coefficient α were introduced to improve the accuracy of adaptive decomposition. Second, a typical single damage signal feature was selected to construct the damage signal feature sample set and a recognition algorithm was used to extract the feature of the AE signal of the glass fiber/epoxy NOL-ring breaking experiment to evaluate the effectiveness of the damage mechanism recognition. The results showed that the recognition rates of the algorithm in matrix cracking, fiber fracture, and delamination damage were 94.59%, 94.26%, and 96.45%, respectively. The damage process of the NOL-ring was characterized and the findings indicated that it was highly efficient in the feature extraction and recognition of polymer composite damage signals.

Funder

Key R&D plan of Hainan Province

Natural Science Foundation of Heilongjiang Province of China

Postdoctoral Research Foundation project of Heilongjiang Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3