Sodium Trimetaphosphate Crosslinked Starch Films Reinforced with Montmorillonite

Author:

Noulis Konstantinos1ORCID,Frangopoulos Theofilos1ORCID,Arampatzidou Athanasia1,Tsekmes Lazaros1,Marinopoulou Anna1,Goulas Athanasios1,Karageorgiou Vassilis1ORCID

Affiliation:

1. Food Process Engineering Laboratory, Department of Food Science and Technology, International Hellenic Univeristy, P.O. Box 141, 57400 Thessaloniki, Greece

Abstract

Synthetic polymers are the main food packaging material, although they are nonbiodegradable and their recycling process is expensive. A biodegradable, eco-friendly material, with high availability and low cost, such as starch, is a promising solution for the production of films for food packaging. To enhance starch film mechanical and barrier properties, nanoclays have been incorporated within the film matrix. Crosslinking is a well-established method to modify starch properties, but it has not been investigated in combination with nanoclay addition. In the present study, films were developed with starch that was crosslinked through the addition of 5, 15, and 40% wt. sodium trimetaphosphate (STMP) based on dry starch weight. To investigate the interaction between crosslinking and nanoclay addition, montmorillonite (MMT) was added at a 10.5% wt. concentration based on dry starch weight. Experimental data revealed a synergistic effect between STMP crosslinking and MMT addition regarding film thickness, elongation at break, color properties, and opacity. Regarding barrier properties, MMT addition negated the effect of STMP crosslinking, while, in the case of moisture content, it did not alter the effect of STMP crosslinking. Finally, in the case of tensile strength, a synergistic effect followed by a negative interaction was observed. In conclusion, the addition of MMT can potentially enhance, alongside crosslinking, some properties of the films, while other properties are not affected any more than just by crosslinking.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3