Chemical Structure and Side Reactions in Polyurea Synthesized via the Water–Diisocyanate Synthesis Pathway

Author:

Stern Theodor1ORCID

Affiliation:

1. Department of Chemical Engineering, Biotechnology and Materials, Faculty of Engineering, Ariel University, Ariel 40700, Israel

Abstract

Industrial polyureas are typically synthesized using diisocyanates via two possible alternative pathways: the extremely quick and highly exothermal diamine–diisocyanate pathway and the relatively slow and mild water–diisocyanate pathway. Although polyurea synthesis via the water–diisocyanate pathway is known and has been industrially applied for many decades, there is surprisingly very little analytical information in the literature in relation to the type and extent of the occurring side reactions and the resulting chemical structures following this synthesis pathway. The synthesis of polyureas exhibiting very high concentrations of carbonyl-containing groups resulted in strong and accurate diagnostic analytical signals of combined FTIR and solid-state 13C NMR analysis. Despite the strictly linear theoretical chemical structure designed, the syntheses resulted in highly nonlinear and crosslinked polymers. It was analytically found that the water–diisocyanate pathway preferentially produced highly dominant and almost equal contents of both biuret structures and tertiary oligo-uret structures, with a very small occurrence of urea groups. This is in strong contrast with the chemical structures previously obtained via the diamine–diisocyanate polyurea synthesis pathway, which almost exclusively resulted in biuret structures. The much slower reaction and crosslinking rate of the water–diisocyanate synthesis pathway enabled the further access of isocyanate groups to the already-formed secondary nitrogens, thus facilitating the formation of complex hierarchical tertiary oligo-uret structures.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference25 articles.

1. Kircheldorf, H.R. (1992). Handbook of Polymer Synthesis, Marcel Decker, Inc.

2. The polyurea structure and the role of amine-terminated polyethers and polyesters in polyurethanes;Schmelzer;J. Prakt. Chem.,1994

3. Synthesis and characterization of new polyurea elastomers by sol/gel chemistry;Rogez;Macromol. Chem. Phys.,2010

4. Some recent advances in polyurea RIM;Grigsby;J. Cell. Plast.,1986

5. Modified polyetheramines in RIM;Grigsby;J. Elastomers Plast.,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3