Single-Step Synthesis and Characterization of Non-Linear Tough and Strong Segmented Polyurethane Elastomer Consisting of Very Short Hard and Soft Segments and Hierarchical Side-Reacted Networks and Single-Step Synthesis of Hierarchical Hyper-Branched Polyurethane

Author:

Stern Theodor1ORCID

Affiliation:

1. Department of Chemical Engineering, Biotechnology and Materials, Faculty of Engineering, Ariel University, Ariel 40700, Israel

Abstract

Polyurethane elastomers are among the most versatile classes of industrial polymers—typically achieved through a two-step synthesis of segmented block copolymers, comprising very long and soft segments that provide elasticity and significantly long and hard segments that provide strength. The present research focused on the design of a single-step synthesis of a new segmented polyurethane consisting of very short soft and hard segments, crosslinked by preferentially side-reacted hierarchical tertiary oligo-uret network structures, thus exhibiting significant strength, elasticity, and toughness. Despite the theoretically linear structure, both FTIR and solid-state 13C NMR spectroscopy analyses indicated the quasi-equal presence of urethane groups and tertiary oligo-uret structures in the resulting polymer, indicating a preferential consecutive side reaction mechanism. Thermal analysis indicated the significant crystallization of soft segments consisting of only four ethylene oxide units, which was, hereby, demonstrated to occur via an extended chain mechanism. Tensile mechanical properties included significant strength, elasticity, and toughness. Increasing the soft segment length led to a decreased tertiary oligo-uret secondary crosslinking efficacy. The preferential hierarchical side reaction mechanism was, hereby, further confirmed through the synthesis of a completely new type of hyper-branched polymer via diisocyanate and a mono-hydroxy-terminated reagent. The structure–property relations and reaction mechanisms demonstrated in the present research can facilitate the design of new polyurethanes of enhanced performance and processing efficacy for a variety of novel applications.

Publisher

MDPI AG

Reference62 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3