Three-Dimensional-Printed Carbon Nanotube/Polylactic Acid Composite for Efficient Electromagnetic Interference Shielding

Author:

Xu Zhenzhen12,Dou Tiantian1,Wang Yazhou1,Zuo Hongmei12,Chen Xinyu1,Zhang Mingchun1,Zou Lihua12

Affiliation:

1. School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China

2. Anhui Province International Cooperation Research Center of Textile Structure Composite Materials, Anhui Polytechnic University, Wuhu 241000, China

Abstract

High-performance electromagnetic interference (EMI) shielding materials with ultralow density and environment-friendly properties are greatly demanded to address electromagnetic radiation pollution. Herein, carbon nanotube/polylactic acid (CNT/PLA) materials with different CNT contents, which exhibit characteristics of light weight, environmental protection and good chemical stability, are fabricated using 3D printing technology, where CNTs are evenly distributed and bind well with PLA. The performances of 3D-printed CNT/PLA composites are improved compared to pure 3D-printed PLA composites, which include mechanical properties, conductive behaviors and electromagnetic interference (EMI) shielding. The EMI shielding effectiveness (SE) of CNT/PLA composites could be improved when the content of CNTs increase. When it reaches 15 wt%, the EMI SE of 3D-printed CNT/PLA composites could get up to 47.1 dB, which shields 99.998% of electromagnetic energy. Meanwhile, the EMI shielding mechanism of 3D-printed CNT/PLA composites is mainly of absorption loss, and it generally accounts for more than 80% of the total shielding loss. These excellent comprehensive performances endow a 3D-printed CNT/PLA composite with great potential for use in industrial and aerospace areas.

Funder

Youth Fund Project of Anhui Natural Science Foundation

Initiating Research Fund for Talent Introduction of Anhui Polytechnic University

University-level scientific research project of Anhui Polytechnic University

Undergraduate top-notch talent training program of Anhui Polytechnic University

Anhui Polytechnic University Scientific Research Project

Advanced Fiber Materials Engineering Research Center of Anhui Province Project

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3