Particle Shedding from Cotton and Cotton-Polyester Fabrics in the Dry State and in Washes

Author:

Pušić Tanja1ORCID,Vojnović Branka1ORCID,Flinčec Grgac Sandra1ORCID,Čurlin Mirjana2,Malinar Rajna1

Affiliation:

1. Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia

2. Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia

Abstract

The influence of 3, 10 and 50 washing cycles on the properties of cotton fabric and cotton-polyester blend in plain weave, was investigated in this study. In addition to the analysis of tensile properties in weft and warp directions and thickness, the number of particles produced in the dry state was also measured after 3, 10 and 50 washes. After washing, the entire effluent was analysed by determining the total suspended solids (TSS), the total solids (TS), the pH value and the conductivity. To determine the similarity of the observed wash cycles and properties of all processed samples, hierarchical cluster analysis (HCA) was performed. The fabric changes indicated by total wear in the warp direction after 50 washing cycles compared to unwashed ones amounting to 41.2% for cotton and 30.9% for cotton-polyester blend, may be attributed to the synergy of washing factors and raw material composition. Cotton fabric produced significantly more particles than cotton-polyester fabric in the dry state after the examined washing cycles in all size categories. A smaller number of released particles are in the larger size category >25 μm. The obtained TSS values confirm the degree of loading of the effluent with particulate matter from the analysed fabrics, since the detergent consists of water-soluble components. The HCA dendrograms confirmed that the release of particles during the first washing cycles is mainly determined by the structural properties of fabrics, while in the subsequent cycles the synergistic effect of chemical, mechanical and thermal effects in the interaction with the material prevailed.

Funder

Croatian Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3