Functional Properties of Chitosan Oligomers Obtained by Enzymatic Hydrolysis

Author:

Kulig Dominika1ORCID,Król-Kilińska Żaneta1,Bobak Łukasz1ORCID,Żarowska Barbara2,Jarmoluk Andrzej1,Zimoch-Korzycka Anna1ORCID

Affiliation:

1. Department of Functional Food Development, Faculty of Food Science and Biotechnology, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego St., 51-630 Wroclaw, Poland

2. Department of Biotechnology and Food Microbiology, The Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego St., 51-630 Wroclaw, Poland

Abstract

The aims of this study were to obtain chitooligosaccharides (COS) from chitosan (CH) with improved functional properties and comparison of the use of two different enzymes: commercial cellulase (CL) and the dedicated enzyme chitosanase (CS). After enzymatic reaction, chitosan oligomers (NFs) were isolated by methanol into two fractions: precipitate (HMF) and supernatant (LMF). The occurrence of a hydrolysis reaction was confirmed by an increased reducing sugar content and viscosity reduction of chitosan oligomers. CPMAS 13C NMR analysis confirmed the dissimilar cleavage mechanism of the enzymes used. LMF and NF fractions were characterised by improved solubility in water (94.56%) compared to the HMF and CH samples (70.64%). Thermogravimetric analysis (TGA) showed that the HMF decomposed in two-stage process while CH, NF, and LMF decomposed in a three-stage process. The greatest mass loss of LMF samples (58.35%) suggests their sensitivity to high-temperature treatments. COS were a mixture of DP (degrees of polymerisation) from 3 to 18 hetero-chitooligomers, with an average Mw of <3 kDa. CL consisted of more low-DP products (DP 3–7) than COS made with CS. LMF characterised by DP~2 showed lower DPPH radical scavenging activity than HMF and NF with DP 3–7. The ability to reduce Escherichia coli increased in the given order: LMF > NF > HMF > CH.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3