Emission and Mechanical Properties of Glass and Cellulose Fiber Reinforced Bio-Polyamide Composites

Author:

Wolff Susanne1ORCID,Rüppel Annette1,Rida Hassan Ali1,Heim Hans-Peter1

Affiliation:

1. Institute of Material Engineering, Polymer Engineering, University of Kassel, 34125 Kassel, Germany

Abstract

Climate change, access, and monopolies to raw material sources as well as politically motivated trade barriers are among the factors responsible for a shortage of raw materials. In the plastics industry, resource conservation can be achieved by substituting commercially available petrochemical-based plastics with components made from renewable raw materials. Innovation potentials are often not used due to a lack of information on the use of bio-based materials, efficient processing methods, and product technologies or because the costs for new developments are too high. In this context, the use of renewable resources such as fiber-reinforced polymeric composites based on plants has become an important criterion for the development and production of components and products in all industrial sectors. Bio-based engineering thermoplastics with cellulose fibers can be used as substitutes because of their higher strength and heat resistance, but the processing of this composite is still challenging. In this study, composites were prepared and investigated using bio-based polyamide (PA) as a polymer matrix in combination with a cellulosic fiber and, for comparison purposes, a glass fiber. A co-rotating twin-screw extruder was used to produce the composites with different fiber contents. For the mechanical properties, tensile tests and charpy impact tests were performed. Compared to glass fiber, reinforced PA 6.10 and PA 10.10, a significantly higher elongation at break with regenerated cellulose fibers, can be achieved. PA 6.10 and PA 10.10 achieve significantly higher impact strengths with the regenerated cellulose fibers than the composites with glass fibers. In the future, bio-based products will also be used in indoor applications. For characterization, the VOC emission GC-MS analysis and odor evaluation methods were used. The VOC emissions (quantitative) were at a low level but the results of the odor tests of selected samples showed values mostly above the required limit values.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference65 articles.

1. Witten, E., and Mathes, V. (2022). Der europäische Markt für Faserverstärkte Kunststoffe/Composites 2021: Marktentwicklungen, Trends, Herausforderungen und Ausblicke, AVK-Industrieverband Verstärkter Kunststoffe.

2. Fibre length and loading impact on the properties of glass fibre reinforced polypropylene random composites;Delli;Compos. Struct.,2021

3. Influence of glass fiber content on tensile properties of polyamide-polypropylene based polymer blend composites;Nuruzzaman;Mater. Today,2020

4. The combined effect of impregnated rollers configuration and glass fibers surface modification on the properties of continuous glass fibers reinforced polypropylene prepreg composites;Fang;Compos. Sci. Technol.,2020

5. Di Lorenzo, M.L., and Androsch, R. (2019). Thermal Properties of Bio-Based Polymers, Springer.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3