Affiliation:
1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
2. Heilongjiang EPPEN New Materials Co., Ltd., Daqing 166299, China
Abstract
Bio-based polymers can reduce dependence on nonrenewable petrochemical resources and will be beneficial for future sustainable developments due to their low carbon footprint. In this work, the feasibility of bio-based polyamide 56 (PA56) substituting petroleum-based PA66 is systematically investigated. The crystallization, melting, and decomposition temperature of PA56 were all lower than that of PA66. PA56 formed a γ crystal type with larger grain size and took a longer amount of time to complete the crystallization process since its crystallization rate was lower than that of PA66. Compared with PA66, PA56 exhibited a higher tensile strength of 71.3 ± 1.9 MPa and specific strength of 64.8 ± 2.0 MPa but lower notched impact strength. More importantly, the limited oxygen index and vertical combustion measurement results indicated that the flame retardancy of PA56 was better than PA66, and the LOI values and the UL94 result of PA56 were 27.6% ± 0.9% and V-2. It is worth noting that the PA56 fiber had superior biodegradability compared to the PA66 fiber. PA56 showed significant biodegradation from the eighth week, whereas PA66 remained clean until the sixteenth week (without obvious biodegradation taking place). Eventually, PA56 did not show significant differences compared to PA66 in terms of thermal and mechanical properties. However, PA56 had great advantages in flame retardancy and biodegradability, indicating that the bio-based PA56 could potentially replace petroleum-based PA66 in many fields.
Funder
the National Key Research and Development Program of China
the National Natural Science Foundation of China
China Postdoctoral Science Foundation
the Natural Science Foundation of Shanghai
Shanghai Rising-Star Program
the Open Research Fund of Center for Civil Aviation Composites
Donghua University, the Belt & Road Young Scientist Exchanges Project of Science and Technology Commission Foundation of Shanghai
the Science and Technology Commission of Shanghai Municipality
the Fundamental Research Funds for the Central Universities
DHU Distinguished Young Professor Program
Subject
Polymers and Plastics,General Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献