A Coherent Assessment of the Compressive Strain Rate Response of PC, PETG, PMMA, and TPU Thermoplastics in MEX Additive Manufacturing

Author:

Petousis Markos1ORCID,Ntintakis Ioannis1,David Constantine2ORCID,Sagris Dimitrios2ORCID,Nasikas Nektarios K.3,Korlos Apostolos4ORCID,Moutsopoulou Amalia1,Vidakis Nectarios1

Affiliation:

1. Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece

2. Department of Mechanical Engineering, International Hellenic University, Serres Campus, 62124 Serres, Greece

3. Division of Mathematics and Engineering Sciences, Department of Military Sciences, Hellenic Army Academy, 16673 Vari, Greece

4. Department of Industrial Engineering and Management, International Hellenic University, 14th km Thessaloniki—N. Moudania, Thermi, 57001 Thessaloniki, Greece

Abstract

In this study, we successfully address a significant research and engineering gap by quantitatively assessing the impact of varying compressive loading rates on the mechanical behavior of four popular thermoplastic polymers in material-extrusion-based (MEX) 3D printing. Raw powders of polycarbonate (PC), polyethylene terephthalate glycol (PETG), polymethyl methacrylate (PMMA), and thermoplastic polyurethane (TPU) were processed through melt extrusion, and the filaments were used to 3D-print the test samples. For completeness, thermogravimetric analysis and a compressive test following the ASTM-D695 standard were conducted. Ultimately, the compressive strength and yield stress, the compressive modulus of elasticity and toughness, and the maximum compressive sensitivity index were thoroughly documented. Specimens were tested in strain rates from 1.3 mm/min to 200 mm/min. The compressive strength (40% for the PMMA) and stiffness (29% for the TPU) increased with the increase in the strain rate in all polymers tested. PC had the highest strain rate sensitivity. Significant variations in deformation and fracture modes were observed and thoroughly documented throughout this study. Our findings can be useful in industrial engineering as valued design optimization input parameters in various applications involving the above-mentioned polymeric materials.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3