Quantitative Insight into the Compressive Strain Rate Sensitivity of Polylactic Acid, Acrylonitrile Butadiene Styrene, Polyamide 12, and Polypropylene in Material Extrusion Additive Manufacturing

Author:

Vidakis N.ORCID,Petousis M.,Ntintakis I.,David C.,Sagris D.,Mountakis N.,Moutsopoulou A.

Abstract

AbstractHerein, a research and engineering gap, i.e., the quantitative determination of the effects of the compressive loading rate on the engineering response of the most popular polymers in Material Extrusion (MEX) Additive Manufacturing (AM) is successfully filled out. PLA (Polylactic Acid), ABS (Acrylonitrile Butadiene Styrene), PP (Polypropylene), and PA12 (Polyamide 12) raw powders were evaluated and melt-extruded to produce fully documented filaments for 3D printing. Compressive specimens after the ASTM-D695 standard were then fabricated with MEX AM. The compressive tests were carried out in pure quasi-static conditions of the test standard (1.3 mm/min) and in accelerated loading rates of 50, 100, 150, and 200 mm/min respectively per polymer. The experimental and evaluation course proved differences in engineering responses among different polymers, in terms of compressive strength, elasticity modulus, toughness, and strain rate sensitivity index. A common finding was that the increase in the strain rate increased the mechanical response of the polymeric parts. The increase in the compressive strength reached 25% between the lowest and the highest strain rates the parts were tested for most polymers. Remarkable variations of deformation and fracture modes were also observed and documented. The current research yielded results with valuable predictive capacity for modeling and engineering modeling, which hold engineering and industrial merit.

Funder

Hellenic Mediterranean University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3