Affiliation:
1. School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
Abstract
Polyimide foam (PIF) is a rising star in high-end applications such as aerospace thermal insulation and military sound absorption. However, the basic rule on molecular backbone design and uniform pore formation of PIF still need to be explored. In this work, polyester ammonium salt (PEAS) precursor powders are synthesized between alcoholysis ester of 3, 3′, 4, 4′-benzophenone tetracarboxylic dianhydride (BTDE) and aromatic diamines with different chain flexibility and conformation symmetry. Then, a standard “stepwise heating” thermo-foaming approach is used to prepare PIF with comprehensive properties. A rational thermo-foaming program is designed based on in situ observation of pore formation during heating. The fabricated PIFs have uniform pore structure, and PIFBTDA-PDA shows the smallest size (147 μm) and narrow distribution. Interestingly, PIFBTDA-PDA also presents a balanced strain recovery rate (SR = 91%) and mechanical robustness (0.051 MPa at 25% strain) and its pore structure maintains regularity after 10 compression–recovery cycles, mainly due to high rigidity of the chains. Furthermore, all the PIFs possess lightweight feature (15–20 kg∙m−3), good heat resistance (Tg at 270–340 °C), thermal stability (T5% at 480–530 °C), thermal insulation properties (λ = 0.046–0.053 W∙m−1K−1 at 20 °C, λ = 0.078–0.089 W∙m−1K−1 at 200 °C), and excellent flame retardancy (LOI > 40%). The reported monomer-mediated pore-structure control strategy can provide guidelines for the preparation of high-performance PIF and its industrial applications.
Subject
Polymers and Plastics,General Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献