Synthesis and properties of new polyimide foams from foaming compositions with flexible segments of aliphatic diamine

Author:

Svetlichnyi Valentin1,Polotnyanshchikov Konstantin1,Vaganov Gleb2,Kamalov Almaz2ORCID,Ivan'kova Elena2ORCID,Sukhanova Tatiana1,Ivanov Aleksey3,Popova Elena2,Myagkova Ludmila1,Yudin Vladimir2

Affiliation:

1. Synthesis of Highly Thermostable Polymers Institute of Macromolecular Compounds of Russian Academy of Sciences Saint Petersburg Russia

2. Mechanics of Polymers and Composites Institute of Macromolecular Compounds of Russian Academy of Sciences Saint Peterburg Russia

3. Analytical Laboratory Institute of Macromolecular Compounds of Russian Academy of Sciences Saint Peterburg Russia

Abstract

AbstractNew foaming prepolymer compositions based on 4,4′‐oxydiphthalic anhydride, 4,4′‐diaminodiphenyl ether, 1,6‐hexamethylenediamine (HMDA), and a surfactant were synthesized. Polyimide (PI) foams containing from 0 to 40 mol% HMDA were prepared. The possibility of controlling the pore sizes in a foam material by selecting different fractions (250–400 μm) of particles of the powdered foam composition for heat treatment was shown. Scanning electron microscopy studies of morphology of the synthesized PI foams (PIFs) showed that all foams exhibited open cellular structures with pore diameters ranging from 50 to 500 μm. The influence of the components of the foaming composition (surfactant and aliphatic diamine) on the structure, thermal, and mechanical properties of the resulting PIFs was traced. The samples of PIFs containing 20% and 30% HMDA were elastic (the corresponding stress–strain curves were almost linear up to the 30% deformation) and able to restore their shape after removing the load. The resulting foams exhibited high thermal stability (the onset of weight loss was observed in the 470–500°C range). It was revealed that the synthesized PIF compositions were incombustible in an open flame. Due to their high heat resistance and nonflammability, the obtained PIFs can be used for thermal insulation applications in the aerospace, transport, construction, and microelectronics industries.Highlights New, lightweight, flexible, and nonflammable PIFs have been synthesized. The HMDA additive imparts elasticity to PIFs. The introduction of a surfactant (KT‐6) makes the PIF homogeneous.

Funder

Russian Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3