The Effect of Mechanical Elongation on the Thermal Conductivity of Amorphous and Semicrystalline Thermoplastic Polyimides: Atomistic Simulations

Author:

Nazarychev Victor M.1ORCID,Lyulin Sergey V.1ORCID

Affiliation:

1. Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect V.O. 31, 199004 St. Petersburg, Russia

Abstract

Over the past few decades, the enhancement of polymer thermal conductivity has attracted considerable attention in the scientific community due to its potential for the development of new thermal interface materials (TIM) for both electronic and electrical devices. The mechanical elongation of polymers may be considered as an appropriate tool for the improvement of heat transport through polymers without the necessary addition of nanofillers. Polyimides (PIs) in particular have some of the best thermal, dielectric, and mechanical properties, as well as radiation and chemical resistance. They can therefore be used as polymer binders in TIM without compromising their dielectric properties. In the present study, the effects of uniaxial deformation on the thermal conductivity of thermoplastic PIs were examined for the first time using atomistic computer simulations. We believe that this approach will be important for the development of thermal interface materials based on thermoplastic PIs with improved thermal conductivity properties. Current research has focused on the analysis of three thermoplastic PIs: two semicrystalline, namely BPDA-P3 and R-BAPB; and one amorphous, ULTEMTM. To evaluate the impact of uniaxial deformation on the thermal conductivity, samples of these PIs were deformed up to 200% at a temperature of 600 K, slightly above the melting temperatures of BPDA-P3 and R-BAPB. The thermal conductivity coefficients of these PIs increased in the glassy state and above the glass transition point. Notably, some improvement in the thermal conductivity of the amorphous polyimide ULTEMTM was achieved. Our study demonstrates that the thermal conductivity coefficient is anisotropic in different directions with respect to the deformation axis and shows a significant increase in both semicrystalline and amorphous PIs in the direction parallel to the deformation. Both types of structural ordering (self-ordering of semicrystalline PI and mechanical elongation) led to the same significant increase in thermal conductivity coefficient.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference110 articles.

1. Emerging challenges and materials for thermal management of electronics;Moore;Mater. Today,2014

2. Advanced Thermal Interface Materials for Thermal Management;Yu;Eng. Sci.,2018

3. Present and future thermal interface materials for electronic devices;Razeeb;Int. Mater. Rev.,2017

4. Nanothermal Interface Materials: Technology Review and Recent Results;Matin;J. Electron. Packag. Trans. ASME,2015

5. Super-high thermal conductivity of polyamide-6/graphene-graphene oxide composites through in situ polymerization;Chen;High Perform. Polym.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3