Characterization of Synthetic Polymer Coated with Biopolymer Layer with Natural Orange Peel Extract Aimed for Food Packaging

Author:

Gabrić Domagoj1ORCID,Kurek Mia1,Ščetar Mario1ORCID,Brnčić Mladen1ORCID,Galić Kata1ORCID

Affiliation:

1. Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia

Abstract

This research was aimed to make biolayer coatings enriched with orange peel essential oil (OPEO) on synthetic laminate, oriented poly(ethylene-terephthalate)/polypropylene (PET-O/PP). Coating materials were taken from biobased and renewable waste sources, and the developed formulation was targeted for food packaging. The developed materials were characterized for their barrier (O2, CO2, and water vapour), optical (colour, opacity), surface (inventory of peaks by FTIR), and antimicrobial activity. Furthermore, the overall migration from a base layer (PET-O/PP) in an acetic acid (3% HAc) and ethanol aqueous solution (20% EtOH) were measured. The antimicrobial activity of chitosan (Chi)-coated films was assessed against Escherichia coli. Permeation of the uncoated samples (base layer, PET-O/PP) increased with the temperature increase (from 20 °C to 40 °C and 60 °C). Films with Chi-coatings were a better barrier to gases than the control (PET-O/PP) measured at 20 °C. The addition of 1% (w/v) OPEO to the Chi-coating layer showed a permeance decrease of 67% for CO2 and 48% for O2. The overall migrations from PET-O/PP in 3% HAc and 20% EtOH were 1.8 and 2.3 mg/dm2, respectively. Analysis of spectral bands did not indicate any surface structural changes after exposure to food simulants. Water vapour transmission rate values were increased for Chi-coated samples compared to the control. The total colour difference showed a slight colour change for all coated samples (ΔE > 2). No significant changes in light transmission at 600 nm for samples containing 1% and 2% OLEO were observed. The addition of 4% (w/v) OPEO was not enough to obtain a bacteriostatic effect, so future research is needed.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3