Electrical Resistivity of 3D-Printed Polymer Elements

Author:

Stankevich Stanislav1ORCID,Sevcenko Jevgenijs1,Bulderberga Olga1ORCID,Dutovs Aleksandrs2,Erts Donat2ORCID,Piskunovs Maksims3,Ivanovs Valerijs3,Ivanov Victor3,Aniskevich Andrey1ORCID

Affiliation:

1. Institute for Mechanics of Materials, University of Latvia, Jelgavas St. 3, LV-1004 Riga, Latvia

2. Institute of Chemical Physics, University of Latvia, Jelgavas St. 1, LV-1004 Riga, Latvia

3. ZRF Ritec SIA, Gustava Zemgala St. 71A, LV-1039 Riga, Latvia

Abstract

During this study, the resistivity of electrically conductive structures 3D-printed via fused filament fabrication (FFF) was investigated. Electrical resistivity characterisation was performed on various structural levels of the whole 3D-printed body, starting from the single traxel (3D-printed single track element), continuing with monolayer and multilayer formation, finalising with hybrid structures of a basic nonconductive polymer and an electrically conductive one. Two commercial conductive materials were studied: Proto-Pasta and Koltron G1. It was determined that the geometry and resistivity of a single traxel influenced the resistivity of all subsequent structural elements of the printed body and affected its electrical anisotropy. In addition, the results showed that thermal postprocessing (annealing) affected the resistivity of a standalone extruded fibre (extruded filament through a printer nozzle in freefall) and traxel. The effect of Joule heating and piezoresistive properties of hybrid structures with imprinted conductive elements made from Koltron G1 were investigated. Results revealed good thermal stability within 70 °C and considerable piezoresistive response with a gauge factor of 15–25 at both low 0.1% and medium 1.5% elongations, indicating the potential of such structures for use as a heat element and strain gauge sensor in applications involving stiff materials and low elongations.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3