Enhancing the Fatigue Strength of the Weld Line in Advanced Polymer Injection Molding: Gas-Assisted Mold Temperature Control for Thermoplastic Polyurethane (TPU) Composites

Author:

Minh Pham Son1ORCID,Uyen Tran Minh The1,Do Thanh Trung1ORCID,Nguyen Van-Thuc1,Nguyen Van Thanh Tien2

Affiliation:

1. Faculty of Mechanical Engineering, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City 71307, Vietnam

2. Faculty of Mechanical Engineering, Industrial University of Ho Chi Minh City, Nguyen Van Bao Street, Ward 4, Go Vap District, Ho Chi Minh City 70000, Vietnam

Abstract

This study presents an innovative approach to enhancing weld line strength in advanced polymer injection molding through applying gas-assisted mold temperature control, significantly increasing mold temperature beyond typical values observed in conventional processes. We investigate the effects of various heating times and frequencies on the fatigue strength of Polypropylene (PP) samples and the tensile strength of Acrylonitrile Butadiene Styrene (ABS) composite samples at different Thermoplastic Polyurethane (TPU) percentages and heating times. Using gas-assisted mold heating, mold temperatures exceeding 210 °C are achieved, which represents a significant advancement compared to the standard mold temperatures of less than 100 °C. As a result, the fatigue strength of the PP sample with mold heating at 15 s shows a remarkable increase of up to 5.4 times at 5 Hz compared to the sample without mold temperature control. Moreover, ABS/TPU blends with 15 wt.% TPU exhibit the highest ultimate tensile strength (UTS) value of 36.8 MPa, while blends with 30 wt.% TPU have the lowest UTS value of 21.3 MPa. This advancement demonstrates the potential for improved welding line bonding and fatigue strength in manufacturing. Our findings reveal that increasing the mold temperature before injection results in higher fatigue strength in the weld line, with the TPU percentage having a more significant influence on the mechanical properties of ABS/TPU blends than heating time. The results of this study contribute to a deeper understanding of advanced polymer injection molding and offer valuable insights for process optimization.

Funder

Ho Chi Minh City University of Technology and Education

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3