Analysis of Weld Lines in Micro-Injection Molding

Author:

Liparoti Sara1ORCID,De Piano Giorgia1ORCID,Salomone Rita1ORCID,Pantani Roberto1ORCID

Affiliation:

1. Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Italy

Abstract

Micro-injection molding (µIM) is a widespread process for the production of plastic parts with at least one dimension, or feature, in the microscale (conventionally below 500 µm). Despite injection molding being recognized as a robust process for obtaining parts with high geometry accuracy, one last occurrence remains a challenge in micro-injection molding, especially when junctions are present on the parts: the so-called weld lines. As weld lines are crucial in determining mechanical part performances, it is mandatory to clarify weld line position and characteristics, especially at the industrial scale during mold design, to limit failure causes. Many works deal with weld lines and their dependence on processing parameters for conventional injection molding, but only a few works focus on the weld line in µIM. This work examines the influence of mold temperature on the weld line position and strength by both experimental and simulation approaches in µIM. At mold temperatures below 100 °C, only short shots were obtained in the chosen cavity. At increased mold temperatures, weld lines show up to a 40% decrease in the whole length, and the overall tensile modulus doubles. This finding can be attributed to the reduction of the orientation at the weld line location favored by high mold temperatures. Moldflow simulations consistently reproduce the main features of the process, weld line position and length. The discrepancy between experimental and simulated results was attributed to the fact that crystallization in flow conditions was not accounted for in the model.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3